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As mentioned earlier, the challenge posed by Hadwiger’s conjecture
is to devise a proof technique that makes better use of the assumption of
� > r than just using its consequence of � > r� 1 in a suitable subgraph,
which we know cannot force aKr minor (Theorem 7.2.4). So far, no such
technique is known. See correction page 224.

If we resign ourselves to using just � > r� 1, we can still ask what
additional assumptions might help in making this force a Kr minor.
Theorem 7.2.7 says that an assumption of large girth has this e↵ect;
see also Exercise 32. In fact, a much weaker assumption su�ces: for
any fixed s 2 N and all large enough d depending only on s, the graphs
G 6◆ Ks,s of average degree at least d can be shown to have Kr minors
for r considerably larger than d. For Hadwiger’s conjecture, this implies
the following:

Theorem 7.3.8. (Kühn & Osthus 2005)
For every integer s there is an integer rs such that Hadwiger’s conjecture

holds for all graphs G 6◆ Ks,s and r > rs.

The strengthening of Hadwiger’s conjecture that graphs of chro-
matic number at least r contain Kr as a topological minor has become
known as Hajós’s conjecture. It is false in general, but Theorem 7.2.7
implies it for graphs of large girth:

Corollary 7.3.9. There is a constant g such that all graphs G of girth

at least g satisfy the implication �(G) > r ) G ◆ TKr
for all r.

Proof. Let g be the constant from Theorem 7.2.7. If �(G) > r then, by
Lemma 5.2.3, G has a subgraph H of minimum degree �(H) > r�1. As
g(H) > g(G) > g, Theorem 7.2.7 implies that G ◆ H ◆ TKr. ⇤

7.4 Szemerédi’s regularity lemma

Some 50 years ago, in the course of the proof of a theorem about arith-
metic progressions of integers, Szemerédi developed a graph-theoretical
tool that has since come to dominate methods in extremal graph theory
like none other: his regularity lemma. Very roughly, the lemma says
that all graphs can be approximated by random graphs in the following
sense: every graph can be partitioned, into a bounded number of equal
parts, so that most of its edges run between di↵erent parts and the edges
between any two parts are distributed fairly uniformly – just as we would
expect it if they had been generated at random.
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224 7. Extremal Graph Theory

Erdős & Gallai in 1959. It was this result, together with the easy case of
stars (Exercise 16) at the other extreme, that inspired the conjecture as a
possible unifying result. A proof of the precise conjecture for large graphs was
announced in 2009 by Ajtai, Komlós, Simonovits and Szemerédi, but has not
been made publicly available.

The Erdős-Sós conjecture says that graphs of average degree greater than
k−1 contain every tree with k edges. Loebl, Komlós and Sós have conjectured
a ‘median’ version, which appears to be easier: that if at least half the vertices
of a graph have degree greater than k− 1 it contains every tree with k edges.
An approximate version of this conjecture has been proved by Hladký, Komlós,
Piguet, Simonovits, Stein and Szemerédi in arXiv:1408.3870.

Theorem 7.2.3 was first proved by B.Bollobás & A.G.Thomason, Proof
of a conjecture of Mader, Erdős and Hajnal on topological complete sub-
graphs, Eur. J. Comb. 19 (1998), 883–887, and independently by J.Komlós &
E. Szemerédi, Topological cliques in graphs II, Comb.Probab. Comput. 5
(1996), 79–90. For large G, the latter authors show that the constant c in
the theorem can be brought down to about 1

2
, which is not far from the lower

bound of 1
8
given in Exercise 24.

Theorem 7.2.4 was first proved in 1982 by Kostochka, and in 1984 with a
better constant by Thomason. For references and more insight, also in these
early proofs, see A.G.Thomason, The extremal function for complete minors,
J.Comb.Theory, Ser. B 81 (2001), 318–338. There, Thomason determines the
smallest possible value of the constant c in Theorem 7.2.4 asymptotically for
large r. It can be written as c = α+ o(1), where α = 0.53131 . . . is an explicit
constant and o(1) stands for a function of r tending to zero as r→∞.

Surprisingly, the average degree needed to force an incomplete minor H
of order r remains at cr

√
log r, with c = αγ(H) + o(1), where γ is a graph

invariant H 6→ [0, 1] that is bounded away from 0 for dense H, and o(1) is a
function of |H| tending to 0 as |H|→∞. See J.S.Myers & A.G.Thomason, The
extremal function for noncomplete minors, Combinatorica 25 (2005), 725–753.

As Theorem 7.2.4 is best possible, there is no constant c such that all
graphs of average degree at least cr have a Kr minor. Strengthening this as-

A big step towards the
‘linear Hadwiger’ conjecture
that χ " cr forces a
Kr minor was obtained
by M.Delcourt and
L. Postle, Reducing linear
Hadwiger’s conjecture
to coloring small graphs,
J. Amer.Math. Soc. (2024),
arXiv:2108.01633, who
proved that χ " cr loglog r
forces a Kr minor.

sumption to κ " cr, however, can force a Kr minor in all large enough graphs;
this was proved by T.Böhme, K.Kawarabayashi, J.Maharry and B.Mohar,
Linear connectivity forces large complete bipartite minors, J.Comb.Theory,
Ser. B 99 (2009), 557–582. Their proof rests on a structure theorem for
graphs of large tree-width not containing a given minor, which was proved
only later by R.Diestel, K.Kawarabayashi, Th.Müller & P.Wollan, On the
excluded minor structure theorem for graphs of large tree-width, J.Comb.
Theory, Ser. B 102 (2012), 1189–1210, arXiv:0910.0946. A simple direct
argument that bypasses the use of this structure theorem was found by J.-
O. Fröhlich and Th.Müller, Linear connectivity forces large complete bipartite
minors: an alternative approach, J.Comb.Theory, Ser. B 101 (2011), 502–508,
arXiv:0906.2568.

The fact that large enough girth can force minors of arbitrarily high min-
imum degree, and hence large complete minors, was discovered by Thomassen
in 1983. The reference can be found in W.Mader, Topological subgraphs
in graphs of large girth, Combinatorica 18 (1998), 405–412, from which our
Lemma 7.2.5 is extracted. Our girth assumption of 8k+3 has been reduced to
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8.3 Homogeneous and universal graphs 249

more general model-theoretic point of view, and have therefore been
based on the strongest of all graph relations, the induced subgraph rela-
tion. As a consequence, most of these results are negative; see the notes.

From a graph-theoretic point of view, it seems more promising to
look instead for universal graphs for the weaker subgraph relation, or
even the topological minor or minor relation. For example, while there
is no universal planar graph for subgraphs or induced subgraphs, there
is one for minors:

Theorem 8.3.4. (Diestel & Kühn 1999)
There exists a universal planar graph for the minor relation.

This remained the only result about universal graphs for the minor-
relation for over 20 years, until Georgakopoulos found 4-universal graphs
in Forb4(X) = {G | X 64 G } when X is K5, K3,3 or K@0 .

forX =K5
andX =K3,3,

and proved that there is

none for X = K@0 .

8.4 Connectivity and matching

In this section we look at infinite versions of Menger’s theorem and of the
matching theorems from Chapter 2. This area of infinite graph theory is
one of its best developed fields, with several deep results. One of these,
however, stands out among the rest: a version of Menger’s theorem that
had been conjectured by Erdős decades ago, and was proved only fairly
recently by Aharoni and Berger. The techniques developed for its proof
inspired, over the years, much of the theory in this area.

Before we turn to this result, however, let us take a brief look at
edge-connectivity. Recall from Section 8.1 that in an infinitely edge-
connected countable graph we can easily find infinitely many edge-
disjoint spanning trees. Can we still find such trees when the graph is
uncountable? We can, but this is not quite as easy to prove (Exercise 62).

The following deep theorem of Laviolette reduces the above prob-
lem to its countable case – as it does for many other problems involving
edge-connectivity. Let H be a set of countable graphs forming an edge-
decomposition of an arbitrary graph G. Call this decomposition bond-

faithful if every countable bond of G is contained in some H 2 H and
every finite bond of any H 2 H is a bond also of G. Note that the finite
bonds of G will be bonds of the H 2 H that contain them. (Why?)

Theorem 8.4.1. (Laviolette 2005)
Every graph has a bond-faithful decomposition into countable graphs.

We shall not be able to prove Laviolette’s theorem here. But let
us illustrate its power in reducing problems to their countable case by
deducing an early classic from the theory of infinite graphs.
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Section 12.5. Our new definition seems more natural, since ! implies ⊆ for
the sides to which the separations point: if (A,B) ! (C,D) then B ⊆ C. This B ⊆ D
is also better compatible with the tangle theory of set bipartitions, where it
is customary to refer to an oriented partition (A,B) simply as B (since A is
determined as A = V ! B); see the book reference below for more on such
tangles and their applications.

Profiles more general than tangles are studied in R.Diestel, F.Hundert-
mark & S. Lemanczyk, Profiles of separations: in graphs, matroids, and be-
yond, Combinatorica 39, 37–75. This paper gave the first canonical proof of
the tree-of-tangles theorem, Theorem 12.5.1. The tree-of-tangles theorem it
proves for profiles of so-called abstract separation systems also implies The-
orem 12.3.7 and Exercise 57, since blocks and edge-tangles induce profiles.
Indeed this is how they came by their name: as the ‘profiles’ of blocks visible
on the screen of the low-order separations of a graph, which they orient.

Our first proof of the tree-of-tangles theorem, and in particular the splin-
ter lemma on which it is based, are due to C.Elbracht, J.Kneip & M.Teegen,
Trees of tangles in abstract separation systems, J.Comb.Theory, Ser. A 180
(2021), arXiv:1909.09030. Its canonical strengthening, Theorem 12.5.8, is due
to J. Carmesin & J.Kurkofka, Entanglements, J.Comb.Theory, Ser. B 164
(2024), 17–28, arXiv:2205.11488. This paper also give examples of entangle-
ments that are not of the form D(τ, τ ′). Thus, Theorem 12.5.8 is also more
general than Theorem 12.5.1, not only stronger.

Our proof of Theorem 12.5.9 is adapted from R.Diestel & S.Oum, Tangle-
tree duality in abstract separation systems, Adv.Math. 377 (2021), 107470;
arXiv:1701.02509. In this paper, a duality theory is developed for tangles in
abstract separation systems, not necessarily of graphs. Its main result contains
Theorems 12.5.9 and 12.5.11 as special cases.

The theory of tangles in graphs, including its main two theorems, has
been extended to more general combinatorial structures such as matroids or
set partitions. In this general form it can be applied outside mathematics,
in areas as diverse as clustering in data analysis, finding mindsets in political
science or psychology, or consumer behaviour in economics. This is explored
in R.Diestel, Tangles: a structural approach to artificial intelligence in the
empirical sciences, Cambridge University Press 2024. Excerpts, an electronic
edition, and open-source tangle software are available from tangles-book.com.

The Kuratowski set for the graphs of tree-width < 4 have been deter-
mined by S.Arnborg, D.G.Corneil and A.Proskurowski, Forbidden minors
characterization of partial 3-trees, Discrete Math. 80 (1990), 1–19. They are:
K5, the octahedron K2,2,2, the 5-prism C5 ×K2, and the Wagner graph W.
The Kuratowski set KP(S) for a given surface S has been determined explicitly
for only one surface other than the sphere, the projective plane. It consists
of 35 forbidden minors; see D.Archdeacon, A Kuratowski theorem for the
projective plane, J.Graph Theory 5 (1981), 243–246. It is not difficult to
show that |KP(S)| grows rapidly with the genus of S (Exercise 67).

A survey of finite forbidden minor theorems is given in Chapter 6.1 of
R.Diestel, Graph Decompositions, Oxford University Press 1990. More recent
developments are surveyed in R.Thomas, Recent excluded minor theorems, in
(J.D. Lamb & D.A.Preece, eds) Surveys in Combinatorics 1999 , Cambridge
University Press 1999, 201–222. A survey of infinite forbidden minor theorems
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