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Lemma 1.5.5. Let T be a normal tree in G.
[8.2.3]
[8.6.8]

(i) Any two vertices x, y ∈ T are separated in G by the set �x�∩ �y�.
(ii) If S ⊆ V (T ) = V (G) and S is down-closed, then the components

of G−S are spanned by the sets �x� with x minimal in T −S.

Proof. (i) Let P be any x–y path in G; we show that P meets �x�∩ �y�.
Let t1, . . . , tn be a minimal sequence of vertices in P ∩T such that t1 = x
and tn = y and ti and ti+1 are comparable in the tree-order of T for
all i. (Such a sequence exists: the set of all vertices in P ∩ T , in their
natural order as they occur on P , has this property because T is normal
and every segment tiPti+1 is either an edge of T or a T - path.) In our
minimal sequence we cannot have ti−1 < ti > ti+1 for any i, since ti−1

and ti+1 would then be comparable, and deleting ti would yield a smaller
such sequence. Thus, our sequence has the form

x = t1 > . . . > tk < . . . < tn = y

for some k ∈ {1, . . . , n}. As tk ∈ �x�∩�y�∩V (P ), our proof is complete.
(ii) Consider a component C of G − S, and let x be a minimal

element of its vertex set. Then V (C) has no other minimal element x′:
as x and x′ would be incomparable, any x–x′ path in C would by (i)
contain a vertex below both, contradicting their minimality in V (C).
Hence as every vertex of C lies above some minimal element of V (C), it
lies above x. Conversely, every vertex y ∈ �x� lies in C, for since S is
down-closed, the ascending path xTy lies in T −S. Thus, V (C) = �x�.

Let us show that x is minimal not only in V (C) but also in T −S.
The vertices below x form a chain �t� in T . As t is a neighbour of x,
the maximality of C as a component of G−S implies that t ∈ S, giving
�t� ⊆ S since S is down-closed. This completes the proof that every
component of G−S is spanned by a set �x� with x minimal in T −S.

Conversely, if x is any minimal element of T − S, it is clearly also
minimal in the component C of G − S to which it belongs. Then
V (C) = �x� as before, i.e., �x� spans this component. �

Normal spanning trees are also called depth-first search trees, be-
cause of the way they arise in computer searches on graphs (Exercise 2626).
This fact is often used to prove their existence, which can also be shown
by a very short and clever induction (Exercise 2525). The following con-
structive proof, however, illuminates better how normal trees capture
the structure of their host graphs.

Proposition 1.5.6. Every connected graph contains a normal spanning
[6.5.3]
[8.2.4]

tree, with any specified vertex as its root.
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1.7 Contraction and minors 19

1.7 Contraction and minors

In Section 1.1 we saw two fundamental containment relations between
graphs: the ‘subgraph’ relation, and the ‘induced subgraph’ relation. In
this section we meet two more: the ‘minor’ relation, and the ‘topological
minor’ relation. Let X be a fixed graph.

A subdivision of X is, informally, any graph obtained from X by
‘subdividing’ some or all of its edges by drawing new vertices on those
edges. In other words, we replace some edges of X with new paths subdivision

TX of X
between their ends, so that none of these paths has an inner vertex in
V (X) or on another new path. When G is a subdivision of X, we also
say that G is a TX.7 The original vertices of X are the branch vertices branch

vertices
of the TX; its new vertices are called subdividing vertices. Note that
subdividing vertices have degree 2, while branch vertices retain their
degree from X.

If a graph Y contains a TX as a subgraph, then X is a topological
minor of Y (Fig. 1.7.1). topological

minor

X G
Y

Fig. 1.7.1. The graph G is a TX, a subdivision of X.
As G ⊆ Y , this makes X a topological minor of Y .

Similarly, replacing the vertices x of X with disjoint connected
graphs Gx, and the edges xy of X with non-empty sets of Gx– Gy edges,
yields a graph that we shall call an IX.8 More formally, a graph G is
an IX if its vertex set admits a partition {Vx | x ∈ V (X) } into con- IX

nected subsets Vx such that distinct vertices x, y ∈ X are adjacent in X
if and only if G contains a Vx–Vy edge. The sets Vx are the branch sets branch sets

of the IX. Conversely, we say that X arises from G by contracting the
subgraphs Gx and call it a contraction minor of Y . contraction

If a graph Y contains an IX as a subgraph, then X is a minor of Y, minor, �
the IX is a model of X in Y, and we write X � Y (Fig. 1.7.2). model

7 The ‘T ’ stands for ‘topological’. Although, formally, TX denotes a whole class
of graphs, the class of all subdivisions of X, it is customary to use the expression as
indicated to refer to an arbitrary member of that class.

8 The ‘I’ stands for ‘inflated’. As before, while IX is formally a class of graphs,
those admitting a vertex partition {Vx | x ∈ V (X) } as described below, we use the
expression as indicated to refer to an arbitrary member of that class.
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30 1. The Basics

Exercises
1.− What is the number of edges in a Kn?

2. Let d ∈ N and V := {0, 1}d; thus, V is the set of all 0–1 sequences of
length d. The graph on V in which two such sequences form an edge if
and only if they differ in exactly one position is called the d-dimensional
cube. Determine the average degree, number of edges, diameter, girth
and circumference of this graph.

(Hint for the circumference: induction on d.)

3. Let G be a graph containing a cycle C, and assume that G contains
a path of length at least k between two vertices of C. Show that G
contains a cycle of length at least

√
k.

4.− Is the bound in Proposition 1.3.2 best possible?

5. Let v0 be a vertex in a graph G, and D0 := {v0}. For n = 1, 2, . . .
inductively define Dn := NG(D0 ∪ . . .∪Dn−1). Show that Dn = { v |
d(v0, v) = n } and Dn+1 ⊆ N(Dn) ⊆ Dn−1 ∪Dn+1 for all n ∈ N.

6. Show that rad(G) � diam(G) � 2 rad(G) for every graph G.

7. Prove the weakening of Theorem 1.3.4 obtained by replacing average
with minimum degree. Deduce that |G| � n0(d/2, g) for every graph G
as given in the theorem.

8. Show that graphs of girth at least 5 and order n have a minimum degree
of o(n). In other words, show that there is a function f : N → N such
that f(n)/n→ 0 as n→∞ and δ(G) � f(n) for all such graphs G.

9.+ Show that every connected graph G contains a path or cycle of length
at least min {2δ(G), |G|}.

10. Show that a connected graph of diameter k and minimum degree d has
at least about kd/3 vertices but need not have substantially more.

11.− Show that the components of a graph partition its vertex set. (In other
words, show that every vertex belongs to exactly one component.)

12.− Show that every 2-connected graph contains a cycle.

13. Determine κ(G) and λ(G) for G = P m, Cn, Kn, Km,n and the d-
dimensional cube (Exercise 22); d, m, n � 3.

14.− Is there a function f : N → N such that, for all k ∈ N, every graph of
minimum degree at least f(k) is k-connected?

15.+ Let α, β be two graph invariants with positive integer values. Formalize
the two statements below, and show that each implies the other:

(i) β is bounded above by a function of α;

(ii) α can be forced up by making β large enough.

Show that the statement

(iii) α is bounded below by a function of β

is not equivalent to (i) and (ii). Which small change will make it so?
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148 5. Colouring

A.Treglown, Proof of the 1-factorization and Hamilton decomposition conjec-
tures, Memoirs of the AMS (to appear).

List colourings were first introduced in 1976 by Vizing. Among other
things, Vizing proved the list-colouring equivalent of Brooks’s theorem. Voigt
(1993) constructed a plane graph of order 238 that is not 4-choosable; thus,
Thomassen’s list version of the five colour theorem is best possible. A stim-
ulating survey on the list-chromatic number and how it relates to the more
classical graph invariants (including a proof of Theorem 5.4.1) is given by
N.Alon, Restricted colorings of graphs, in (K.Walker, ed.) Surveys in Combi-
natorics, LMS Lecture Notes 187, Cambridge University Press 1993. Both the
list colouring conjecture and Galvin’s proof of the bipartite case are originally
stated for multigraphs. Kahn (1994) proved that the conjecture is asymptot-
ically correct, as follows: given any ε > 0, every graph G with large enough
maximum degree satisfies ch′(G) � (1+ ε)Δ(G).

The total colouring conjecture (Exercise 3232) was proposed around 1965
by Vizing and by Behzad; see Jensen & Toft for details.

A gentle introduction to the basic facts about perfect graphs and their
applications is given by M.C.Golumbic, Algorithmic Graph Theory and Per-
fect Graphs, Academic Press 1980. A more comprehensive treatment is
given in A. Schrijver, Combinatorial optimization, Springer 2003. Surveys
on various aspects of perfect graphs are included in Perfect Graphs by
J.Ramirez-Alfonsin & B.Reed (eds.), Wiley 2001. Our first proof of the per-
fect graph theorem, Theorem 5.5.4, follows Lovász’s survey on perfect graphs
in (L.W.Beineke and R.J. Wilson, eds.) Selected Topics in Graph Theory 2,
Academic Press 1983. Our second proof, the proof of Theorem 5.5.6, is due to
G.S.Gasparian, Minimal imperfect graphs: a simple approach, Combinatorica
16 (1996), 209–212.

Theorem 5.5.3 is proved in M.Chudnovsky, N.Robertson, P.D. Seymour
and R.Thomas, The strong perfect graph theorem, Ann. Math. 164 (2006),
51–229, arXiv:math/0212070. This proof is elucidated by N.Trotignon in
his 2013 survey on the arXiv:1301.5149, which also offers a short account of
Lovász’s proof of the (weak) perfect graph theorem. Chudnovsky, Cornuejols,
Liu, Seymour and Vušković, Recognizing Berge graphs, Combinatorica 25
(2005), 143–186, constructed an O(n9) algorithm testing for odd holes and
antiholes, and thus by the strong perfect graph theorem also for perfection.

Gýarfás’s conjecture on χ-boundedness that prompted Theorem 5.5.7 is
from A.Gyárfás, Problems from the world surrounding perfect graphs, Pro-
ceedings of the International Conference on Combinatorial Analysis and its
Applications (Pokrzywna, 1985), Zastos. Mat.19 (1987), 413–441. Part (i)
of the theorem is due to A. Scott and P.D. Seymour, arXiv:1410.4118, while
part (ii) was proved by M.Chudnovsky and these authors in arXiv:1506.02232.

The structure of graphs forced by forbidding some fixed induced subgraph
or subgraphs, as in the strong perfect graph theorem, has been studied more
widely since the proof of that theorem left a community of experts without
an overriding goal. One of the central problems now studied is the Erdős-
Hajnal conjecture that the graphs without some fixed induced subgraph have
linearly large sets of vertices that are either independent or induce a complete
subgraph. See Chapter 9.1 for a precise statement.

http://arxiv.org/abs/math/0212070
http://arxiv.org/abs/1301.5149
http://arxiv.org/abs/1410.4118
http://arxiv.org/abs/1506.02232
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230 8. Infinite Graphs

vertices outside U ∪ W that are not adjacent to u, and let V2 contain
the remaining vertices. As u is isolated in G[V1], we have G �
 G[V1]
and hence G 
 G[V2]. By the minimality of |U ∪W |, there is a vertex
v ∈ G[V2]−U −W that is adjacent to every vertex in U � {u} and to
none in W . But v is also adjacent to u, because it lies in V2. So U , W
and v satisfy (∗) for G, contrary to assumption.

Finally, assume that U = ∅. Then W �= ∅. Pick w ∈ W , and consider
the partition {V1, V2} of V where V1 consists of w and all its neighbours
outside W . As before, G �
 G[V1] and hence G 
 G[V2]. Therefore U
and W �{w} satisfy (∗) in G[V2], with v ∈ V2 �W say, and then U, W, v
satisfy (∗) in G. �

Another indication of the high degree of uniformity in the structure
of the Rado graph is its large automorphism group. For example, R is
easily seen to be vertex-transitive: given any two vertices x and y, there
is an automorphism of R mapping x to y.

In fact, much more is true: using the back-and-forth technique, one
can easily show that the Rado graph is homogeneous: every isomorphismhomoge-

neous
between two finite induced subgraphs can be extended to an automor-
phism of the entire graph (Exercise 5050).

Which other countable graphs are homogeneous? The complete
graph Kℵ0 and its complement are again obvious examples. Moreover,
for every integer r � 3 there is a homogeneous Kr-free graph Rr, con-
structed as follows. Let Rr

0 := K1, and let Rr
n+1 be obtained from Rr

n by
joining, for every subgraph H �⊇ Kr−1 of Rr

n, a new vertex vH to every
vertex in H. Then let Rr :=

⋃
n∈N

Rr
n. Clearly, as the new verticesRr

vH of Rr
n+1 are independent, there is no Kr in Rr

n+1 if there was none
in Rr

n, so Rr �⊇ Kr by induction on n. Just like the Rado graph, Rr is
clearly universal among the Kr-free countable graphs, and by the back-
and-forth argument from the proof of Theorem 8.3.1 it is easily seen to
be homogeneous.

By the following deep theorem of Lachlan and Woodrow, the count-
able homogeneous graphs we have seen so far are essentially all:

Theorem 8.3.3. (Lachlan & Woodrow 1980)
Every countably infinite homogeneous graph is one of the following:

• a disjoint union of complete graphs of the same order, or the
complement of such a graph;

• the graph Rr or its complement, for some r � 3;

• the Rado graph R.

To conclude this section, let us return to our original problem: for
which graph properties is there a graph that is universal with this prop-
erty? Most investigations into this problem have addressed it from a
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244 8. Infinite Graphs

Theorem 8.5.3. Every countable rayless graph G has an unfriendly
partition.

Proof. To help with our formal notation, we shall think of a partition
of a set V as a map π:V → {0, 1}. We apply induction on the rank
of G. When this is zero then G is finite, and an unfriendly partition can
be obtained by maximizing the number of edges across the partition.
Suppose now that G has rank α > 0, and assume the theorem as trueα

for graphs of smaller rank.
Let U be a finite set of vertices in G such that each of the compo-U

nents C0, C1, . . . of G − U has rank < α. Partition U into the set U0C0, C1, . . .

of vertices that have finite degree in G, the set U1 of vertices that have
infinitely many neighbours in some Cn, and the set U2 of vertices thatU0, U1, U2

have infinite degree but only finitely many neighbours in each Cn.
For every n ∈ N let Gn := G[U ∪ V (C0) ∪ . . . ∪ V (Cn)]. This isG0, G1, . . .

a graph of some rank αn < α, so by induction it has an unfriendly
partition πn. Each of these πn induces a partition of U . Let πU be a
partition of U induced by πn for infinitely many n, say for n0 < n1 < . . . .
Choose n0 large enough that Gn0 contains all the neighbours of vertices
in U0, and the other ni large enough that every vertex in U2 has more
neighbours in Gni − Gni−1 than in Gni−1 , for all i > 0. Let π be then0, n1, . . .

partition of G defined by letting π(v) := πni(v) for all v ∈ Gni −Gni−1

and all i, where Gn−1 := ∅. Note that π|U = πn0 |U = πU .π

Let us show that π is unfriendly. We have to check that every
vertex is happy with π, i.e., that it has at least as many neighbours in
the opposite class under π as in its own.8 To see that a vertex v ∈
G−U is happy with π, let i be minimal such that v ∈ Gni and recall
that v was happy with πni

. As both v and its neighbours in G lie
in U ∪ V (Gni

− Gni−1), and π agrees with πni
on this set, v is happy

also with π. Vertices in U0 are happy with π, because they were happy
with πn0 , and π agrees with πn0 on U0 and all its neighbours. Vertices in
U1 are also happy. Indeed, every u ∈ U1 has infinitely many neighbours
in some Cn, and hence in some Gni − Gni−1 . Then u has infinitely
many opposite neighbours in Gni −Gni−1 under πni . Since πni agrees
with π on both U and Gni − Gni−1 , our vertex u has infinitely many
opposite neighbours also under π. Vertices in U2, finally, are happy with
every πni

. By our choice of ni, at least one of their opposite neighbours
under πni must lie in Gni −Gni−1 . Since πni agrees with π on both U2

and Gni
−Gni−1 , this gives every u ∈ U2 at least one opposite neighbour

under π in every Gni
− Gni−1 . Hence u has infinitely many opposite

neighbours under π, which clearly makes it happy. �

8 It is only by tradition that such partitions are called ‘unfriendly’; our vertices
love them.
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264 8. Infinite Graphs

30. Show that a graph G contains a TK@0 if and only if some end of G is
dominated by infinitely many vertices.

31.+ Let G be a finitely separable graph, one in which any two vertices can
be separated by finitely many edges.

(i) Show that any two rays in G that cannot be separated by finitely
many edges are dominated by a common vertex.

(ii) Is the assumption of finite separability necessary for (i) to hold?

32. Construct a countable graph with uncountably many thick ends. Can
you find a locally finite such graph?

33. Show that a locally finite connected vertex-transitive graph has exactly
0, 1, 2 or infinitely many ends.

34.+ Show that the automorphisms of a graph G = (V, E) act naturally on
its ends, i.e., that every automorphism �: V !V can be extended to a
map �:⌦(G)!⌦(G) such that �(R) 2 �(!) whenever R is a ray in an
end !. Prove that, if G is connected, every automorphism � of G fixes
a finite set of vertices or an end. If � fixes no finite set of vertices, can
it fix more than one end? More than two?

35.� Show that a locally finite spanning tree of a graph G contains a ray
from every end of G.

36. A ray in a graph follows another ray if the two have infinitely many
vertices in common. Show that if T is a normal spanning tree of G
then every ray of G follows a unique normal ray of T .

37. Use normal spanning trees to show that a countable connected graph
has either countably many or continuum many ends.

38. Show that the following assertions are equivalent for connected count-
able graphs G.

(i) G has a locally finite spanning tree.

(ii) For no finite separator X ✓ V (G) in G does G�X have infinitely
many components.

39. Show that every (countable) planar 3-connected graph has a locally
finite spanning tree.

40. Prove the following infinite version of the Erdős-Pósa theorem: an in-
finite graph G either contains infinitely many disjoint cycles or it has a
finite set Z of vertices such that G�Z is a forest.

41. Let G be a connected graph. Call a set U ✓ V (G) dispersed if every
ray in G can be separated from U by a finite set of vertices. (In the
topology of Section 8.6, these are precisely the closed subsets of V (G).)

(i) Prove that G has a normal spanning tree if and only if V (G) is
a countable union of dispersed sets.

(ii) Deduce that if G has a normal spanning tree then so does every
connected minor of G.

diestel
Line

diestel
Cross-Out

diestel
Inserted Text
ends



9.1 Ramsey’s original theorems 285

(ii) Vi ⊆ Vi−1 � {vi−1} (i = 2, . . . , 2r− 2);

(iii) vi−1 is adjacent either to all vertices in Vi or to no vertex in Vi

(i = 2, . . . , 2r− 2).

Let V1 ⊆ V (G) be any set of 22r−3 vertices, and pick v1 ∈ V1 arbitrarily.
Then (i) holds for i = 1, while (ii) and (iii) hold trivially. Suppose now
that Vi−1 and vi−1 ∈ Vi−1 have been chosen so as to satisfy (i)–(iii) for
i− 1, where 1 < i � 2r− 2. Since

|Vi−1 � {vi−1}| = 22r−1−i − 1

is odd, Vi−1 has a subset Vi satisfying (i)–(iii); we pick vi ∈ Vi arbitrarily.
Among the 2r−3 vertices v1, . . . , v2r−3, there are r−1 vertices that

show the same behaviour when viewed as vi−1 in (iii), being adjacent
either to all the vertices in Vi or to none. Accordingly, these r−1 vertices
and v2r−2 induce either a Kr or a Kr in G, because vi, . . . , v2r−2 ∈ Vi

for all i. �

The least integer n associated with r as in Theorem 9.1.1 is the
Ramsey number R(r) of r; our proof shows that R(r) � 22r−3. In Chap-

Ramsey
number

R(r)ter 11 we shall use a simple probabilistic argument to show that R(r) is
bounded below by 2r/2 (Theorem 11.1.3).

In other words, the largest clique or independent set of vertices that
a graph of order n must contain is, asymptotically, logarithmically small
in n. As soon as we forbid some fixed induced subgraph, however, it may
be much bigger, of size linear in n: The Erdős-Hajnal conjecture says

Erdős-
Hajnal

conjecturethat for every graph H there exists a constant δH > 0 such that every
graph G not containing an induced copy of H has a set of at least |G|δH

vertices that are either independent or span a complete subgraph in G.

It is customary in Ramsey theory to think of partitions as colourings:
a colouring of (the elements of) a set X with c colours, or c-colouring for c-colouring

short, is simply a partition of X into c classes (indexed by the ‘colours’).
In particular, these colourings need not satisfy any non-adjacency re-
quirements as in Chapter 5. Given a c-colouring of [X]k, the set of all [X]k

k-subsets of X, we call a set Y ⊆ X monochromatic if all the elements
of [Y ]k have the same colour,1 i.e. belong to the same of the c partition

mono-
chromatic

classes of [X]k. Similarly, if G = (V, E) is a graph and all the edges of
H ⊆ G have the same colour in some colouring of E, we call H a mono-
chromatic subgraph of G, speak of a red (green, etc.) H in G, and so on.

In the above terminology, Ramsey’s theorem can be expressed as
follows: for every r there exists an n such that, given any n-set X,

1 Note that Y is called monochromatic, but it is the elements of [Y ]k, not of Y ,
that are (equally) coloured.
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12.4 Tree-width 357

Indeed, as X and Y do not touch, the set N(X) is disjoint from both X
and Y and separates them in G. Hence G has a separation {A, B} such A, B

that X ⊆ A � B and Y ⊆ B � A. As |N(X)| � k since X is a petal,
choosing {A, B} of minimum order ensures that S := A∩B has size at S

most k. By the minimality of S and Menger’s Theorem 3.3.1, there is
a family {Ps | s ∈ S } of disjoint S–N(X) paths in G[A] and a family Ps, Qs

{Qs | s ∈ S } of disjoint S–N(Y ) paths in G[B].
Let H be the minor of G obtained by deleting A �

⋃
s∈S V (Ps) H

and contracting each of the paths Ps. Identifying the contracted branch
sets V (Ps) with their representatives s, we may think of H as obtained
from G[B] by adding some edges on S. Let (T1,V ′

1) be the tree-decompo-
sition which (T1,V1) induces on H as in Lemmas 12.3.2 and 12.3.3, and
think of it as a tree-decomposition of G[B]. Thus for any t ∈ T1, with
the part V 1

t ∈ V1 say, its part Vt in V ′
1 is

Vt = (V 1
t ∩B)∪{ s ∈ S | V 1

t ∩V (Ps) �= ∅ } (1)

(Fig. 12.4.1). In particular, Vx = S, since Vx = X∪N(X) ⊆ A and N(X)
meets every Ps. Similarly, let J be the minor of G obtained by deleting J

B �
⋃

s∈S V (Qs) and contracting the paths Qs, and let (T2,V ′
2) be the

tree-decomposition which (T2,V2) induces on J . As before, think of this
as a tree-decomposition of G[A] in which S is the part corresponding to y.

s

Y

S

A B

X
Vt

Ps

XN(  )

Fig. 12.4.1. To obtain V ′
t from Vt ∩B, add two vertices from S

Let T be obtained from the (disjoint) trees T1 and T2 by identifying T

x and y into a new node r. As Y and X are non-empty, x is not the only
node of T1 and y is not the only node of T2, so r is not a leaf of T . Let
Vr := S. For all t ∈ T − r let Vt be the part in V ′

1 or V ′
2 that corresponds Vt

to t there, thought of as a subset of B if t ∈ T1, or of A if t ∈ T2. We
claim that (T,V) with V = (Vt)t∈T is a good tree-decomposition of G (T,V)

satisfying (∗).
Using that (T1,V ′

1) and (T2,V ′
2) are tree-decompositions of G[B]

and G[A], it is easy to check that (T,V) is indeed a tree-decomposition
of G. The non-leaves of T are precisely those of T1 and T2, plus r. We
have already seen that |S| � k. For t ∈ T1 − x, its part Vt in V is no
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12.5 Tangles 361

tree of any tree-decomposition (T,V) of adhesion < k ‘towards’ the side
of its induced separation that contains one of the sets in B, and the edges
thus oriented point to a central node t of T for which Vt covers B.

It has turned out that, sometimes, the only feature of a highly
connected substructure that we really care about is the information of
how it ‘orients’ the low-order separations of G in this way. Collecting
just this information together leads to a more abstract notion of a highly
connected substructure, called a tangle. The purpose of this section is to
make this precise, to prove a duality theorem for tangles in the spirit of
Theorem 12.4.3, and to point out how this setting can be used to express
the duality between tree-structure and highly connected substructures
more generally.

The orientations of a separation {A, B} of G are the two oriented
separations (A, B) and (B, A). We say that (A, B) is oriented , or point- oriented

separation
ing, towards B and its subsets. Given a set S of separations, we write
→
S :=

{
(A, B) | {A, B} ∈ S

}
for the set of all their orientations. An →

S

orientation of S is a subset O of
→
S that contains for every element of S

exactly one of its two orientations. We say that O avoids a collection F avoids

of sets of oriented separations if no subset of O lies in F .
Given oriented separations (A, B) and (C, D) of G, let us write

(A, B) � (C, D) if A ⊆ C and B ⊇ D. A set σ of oriented separations of G �
is consistent if it does not contain (B, A) whenever (A, B) � (C, D) with consistent

(C, D) ∈ σ.4 And σ is a star of oriented separations if (A, B) � (D, C) star

for all distinct (A, B), (C, D) ∈ σ (Fig. 12.5.1).

 

A∩B

A
B

E
F

C

D

A B

B A

Fig. 12.5.1. The separations (A, B), (C, D), (E, F ) form a star

For example, if (T,V) is a tree-decomposition of G with V = (Vt)t∈T ,
then orienting the separations induced by the edges of T towards some
fixed Vt orients them consistently. And the separations corresponding to

4 Intuitively, σ is consistent if no two of its elements point away from each other.
In particular, it will not contain both orientations of any given separation.
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