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2 Matching
Covering

and Packing

Suppose we are given a graph and are asked to find in it as many in-
dependent edges as possible. How should we go about this? Will we
be able to pair up all its vertices in this way? If not, how can we be
sure that this is indeed impossible? Somewhat surprisingly, this basic
problem does not only lie at the heart of numerous applications, it also
gives rise to some rather interesting graph theory.

A set M of independent edges in a graph G = (V, E) is called a
matching . M is a matching of U ⊆ V if every vertex in U is incident matching

with an edge in M . The vertices in U are then called matched (by M); matched

vertices not incident with any edge of M are unmatched .
A k-regular spanning subgraph is called a k-factor . Thus, a sub- factor

graph H ⊆ G is a 1-factor of G if and only if E(H) is a matching of V .
The problem of how to characterize the graphs that have a 1-factor, i.e.
a matching of their entire vertex set, will be our main theme in the first
two sections of this chapter.

A generalization of the matching problem is to find in a given graph
G as many disjoint subgraphs as possible that are each isomorphic to
an element of a given class H of graphs. This is known as the packing packing

problem. It is related to the covering problem, which asks how few covering

vertices of G suffice to meet all its subgraphs isomorphic to a graph
in H. Clearly, we need at least as many vertices for such a cover as the
maximum number k of H-graphs that we can pack disjointly into G. If
there is no cover by just k vertices, perhaps there is always a cover by
at most f(k) vertices, where f(k) may depend on H but not on G? In
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Section 2.3 we shall prove that when H is the class of cycles, then there
is such a function f .

In Section 2.4 we consider packing and covering in terms of edges:
we ask how many edge-disjoint spanning trees we can find in a given
graph, and how few trees in it will cover all its edges. In Section 2.5
we prove a path cover theorem for directed graphs, which implies the
well-known duality theorem of Dilworth for partial orders.

2.1 Matching in bipartite graphs

For this whole section, we let G = (V, E) be a fixed bipartite graph withG = (V, E)

bipartition {A, B}. Vertices denoted as a, a′ etc. will be assumed to lieA, B

in A, vertices denoted as b etc. will lie in B.a, b etc.

How can we find a matching in G with as many edges as possible?
Let us start by considering an arbitrary matching M in G. A path in G
which starts in A at an unmatched vertex and then contains, alternately,
edges from E �M and from M , is an alternating path with respect to M .alternating

path
Note that the path is allowed to be trivial, i.e. to consist of its starting
vertex only. An alternating path P that ends in an unmatched vertex
of B is called an augmenting path (Fig. 2.1.1), because we can use itaugment-

ing path
to turn M into a larger matching: the symmetric difference of M with
E(P ) is again a matching (consider the edges at a given vertex), and the
set of matched vertices is increased by two, the ends of P .

M

A B A B

P M ′

Fig. 2.1.1. Augmenting the matching M by the alternating
path P

Alternating paths play an important role in the practical search for
large matchings. In fact, if we start with any matching and keep applying
augmenting paths until no further such improvement is possible, the
matching obtained will always be an optimal one, a matching with the
largest possible number of edges (Exercise 11). The algorithmic problem
of finding such matchings thus reduces to that of finding augmenting
paths—which is an interesting and accessible algorithmic problem.
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Our first theorem characterizes the maximal cardinality of a matching
in G by a kind of duality condition. Let us call a set U ⊆ V a (vertex)
cover of E if every edge of G is incident with a vertex in U . cover

Theorem 2.1.1. (König 1931)
The maximum cardinality of a matching in G is equal to the minimum
cardinality of a vertex cover of its edges.

Proof. Let M be a matching in G of maximum cardinality. From every M

edge in M let us choose one of its ends: its end in B if some alternating
path ends in that vertex, and its end in A otherwise (Fig. 2.1.2). We
shall prove that the set U of these |M | vertices covers E; since any vertex U

cover of E must cover M , there can be none with fewer than |M | vertices,
and so the theorem will follow.

U ∩A

U ∩B

Fig. 2.1.2. The vertex cover U

Let ab ∈ E be an edge; we show that either a or b lies in U . If
ab ∈ M , this holds by definition of U , so we assume that ab /∈ M . Since
M is a maximal matching, it contains an edge a′b′ with a = a′ or b = b′.
In fact, we may assume that a = a′: for if a is unmatched (and b = b′),
then ab is an alternating path, and so the end of a′b′ ∈ M chosen for
U was the vertex b′ = b. Now if a′ = a is not in U , then b′ ∈ U , and
some alternating path P ends in b′. But then there is also an alternating
path P ′ ending in b: either P ′ := Pb (if b ∈ P ) or P ′ := Pb′a′b. By the
maximality of M , however, P ′ is not an augmenting path. So b must be
matched, and was chosen for U from the edge of M containing it. �

Let us return to our main problem, the search for some necessary
and sufficient conditions for the existence of a 1-factor. In our present
case of a bipartite graph, we may as well ask more generally when G
contains a matching of A; this will define a 1-factor of G if |A| = |B|,
a condition that has to hold anyhow if G is to have a 1-factor.

A condition clearly necessary for the existence of a matching of A
is that every subset of A has enough neighbours in B, i.e. that

marriage
condition

|N(S)| � |S| for all S ⊆ A.
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The following marriage theorem says that this obvious necessary condi-
tion is in fact sufficient:

Theorem 2.1.2. (Hall 1935)[2.2.3]

G contains a matching of A if and only if |N(S)| � |S| for all S ⊆ A.

We give three proofs, of rather different character.1 In each proof we
assume that G satisfies the marriage condition and find a matching of A.

First proof. We show that for every matching M of G that leaves aM

vertex a ∈ A unmatched there is an augmenting path with respect to M .a

Let A′ be the set of vertices in A that can be reached from a by a
non-trivial alternating path, and B′ ⊆ B the set of all penultimate ver-
tices of such paths. The last edges of these paths lie in M , so |A′| = |B′|.
Hence by the marriage condition, there is an edge from a vertex v in
S = A′ ∪{a} to a vertex b in B � B′.

As v ∈ A′ ∪ {a}, there is an alternating path P from a to v. Then
either Pvb or Pb (if b ∈ P ) is an alternating path from a to b; call
this path P ′. If b was matched, by a′b ∈ M say, then P ′ba′ would be
an alternating path putting a′ in A′ and b in B′. But b /∈ B′, so b is
unmatched, and P ′ is the desired augmenting path. �

Second proof. We apply induction on |A|. For |A| = 1 the assertion
is true. Now let |A| � 2, and assume that the marriage condition is
sufficient for the existence of a matching of A when |A| is smaller.

If |N(S)| � |S|+1 for every non-empty set S � A, we pick an edge
ab ∈ G and consider the graph G′ := G−{a, b}. Then every non-empty
set S ⊆ A � {a} satisfies

|NG′(S)| � |NG(S)| − 1 � |S| ,

so by the induction hypothesis G′ contains a matching of A � {a}. To-
gether with the edge ab, this yields a matching of A in G.

Suppose now that A has a non-empty proper subset A′ with |B′| =
|A′| for B′ := N(A′). By the induction hypothesis, G′ := G[A′ ∪ B′]
contains a matching of A′. But G−G′ satisfies the marriage condition
too: for any set S ⊆ A � A′ with |NG−G′(S)| < |S| we would have
|NG(S ∪A′)| < |S ∪A′|, contrary to our assumption. Again by induc-
tion, G−G′ contains a matching of A � A′. Putting the two matchings
together, we obtain a matching of A in G. �

For our last proof, let H be an edge-minimal subgraph of G thatH

satisfies the marriage condition and contains A. Note that dH(a) � 1
for every a ∈ A, by the marriage condition with S = {a}.

1 The theorem can also be derived easily from König’s theorem; see Exercise 55.
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Third proof. We show that dH(a) = 1 for every a ∈ A. The edges of
H then form a matching of A, since by the marriage condition no two
such edges can share a vertex in B.

A1

A2

a

b2

b1

B1

Fig. 2.1.3. B1 contains b2 but not b1

Suppose a has distinct neighbours b1, b2 in H. By definition of H,
the graphs H − ab1 and H − ab2 violate the marriage condition. So for
i = 1, 2 there is a set Ai ⊆ A containing a such that |Ai| > |Bi| for
Bi := NH−abi

(Ai) (Fig. 2.1.3). Since b1 ∈ B2 and b2 ∈ B1,

|NH(A1 ∩A2 � {a})| � |B1 ∩B2|
= |B1|+ |B2| − |B1 ∪B2|
= |B1|+ |B2| −

∣
∣NH(A1 ∪A2)|

� |A1| − 1 + |A2| − 1− |A1 ∪A2|
= |A1 ∩A2| − 2
= |A1 ∩A2 � {a}|− 1 .

Hence H violates the marriage condition, contrary to assumption. �

This last proof has a pretty ‘dual’, which begins by showing that
dH(b) � 1 for every b ∈ B. See Exercise 66 and its hint for details.

Corollary 2.1.3. If G is k-regular with k � 1, then G has a 1-factor.

Proof. If G is k-regular, then clearly |A| = |B|; it thus suffices to show by
Theorem 2.1.2 that G contains a matching of A. Now every set S ⊆ A
is joined to N(S) by a total of k |S| edges, and these are among the
k |N(S)| edges of G incident with N(S). Therefore k |S| � k |N(S)|, so
G does indeed satisfy the marriage condition. �

In some real-life applications, matchings are not chosen on the basis
of global criteria for the entire graph but evolve as the result of inde-
pendent decisions made locally by the participating vertices. A typical
situation is that vertices are not indifferent to which of their incident
edges are picked to match them, but prefer some to others. Then if M
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is a matching and e = ab is an edge not in M such that both a and
b prefer e to their current matching edge (if they are matched), then a
and b may agree to change M locally by including e and discarding their
earlier matching edges. The matching M , although perhaps of maximum
size, would thus be unstable.

More formally, call a family (�v)v∈V of linear orderings �v on E(v)preferences

a set of preferences for G. Then call a matching M in G stable if for
every edge e ∈ E � M there exists an edge f ∈ M such that e and f

stable
matching

have a common vertex v with e <v f . The following result is sometimes
called the stable marriage theorem:

Theorem 2.1.4. (Gale & Shapley 1962)[5.4.4]

For every set of preferences, G has a stable matching.

Proof (compare Exercise 1515). Call a matching M in G better than a
matching M ′ �= M if M makes the vertices in B happier than M ′ does,
that is, if every vertex b in an edge f ′ ∈ M ′ is incident also with some
f ∈ M such that f ′ �b f . We shall construct a sequence of better
and better matchings. Since these can increase the happiness of a fixed
vertex b at most d(b) times, this process will terminate.

Given a matching M , call a vertex a ∈ A acceptable to b ∈ B if
e = ab ∈ E � M and any edge f ∈ M at b satisfies f <b e. Call a ∈ A
happy with M if a is unmatched or its matching edge f ∈ M satisfies
f >a e for all edges e = ab such that a is acceptable to b.

Starting with the empty matching, let us construct a sequence of
matchings that each keep all the vertices in A happy. Given such a
matching M , consider a vertex a ∈ A that is unmatched but acceptable
to some b ∈ B. (If no such a exists, terminate the sequence.) Add to M
the �a-maximal edge ab such that a is acceptable to b, and discard from
M any other edge at b.

Clearly, each matching in our sequence is better than the previous,
and it is easy to check inductively that they all keep the vertices in A
happy. So the sequence continues until it terminates with a matching
M such that every unmatched vertex in A is inacceptable to all its
neighbours in B. As every matched vertex in A is happy with M , this
matching is stable. �

Despite its seemingly narrow formulation, the marriage theorem
counts among the most frequently applied graph theorems, both out-
side graph theory and within. Often, however, recasting a problem in
the setting of bipartite matching requires some clever adaptation. As a
simple example, we now use the marriage theorem to derive one of the
earliest results of graph theory, a result whose original proof is not all
that simple, and certainly not short:
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Corollary 2.1.5. (Petersen 1891)
Every regular graph of positive even degree has a 2-factor.

Proof. Let G be any 2k-regular graph (k � 1), without loss of generality (1.8.1)

connected. By Theorem 1.8.1, G contains an Euler tour v0e0 . . . e�−1v�,
with v� = v0. We replace every vertex v by a pair (v−, v+), and every
edge ei = vivi+1 by the edge v+

i v−i+1 (Fig. 2.1.4). The resulting bipartite
graph G′ is k-regular, so by Corollary 2.1.3 it has a 1-factor. Collapsing
every vertex pair (v−, v+) back into a single vertex v, we turn this 1-
factor of G′ into a 2-factor of G. �

v

v−

v+

Fig. 2.1.4. Splitting vertices in the proof of Corollary 2.1.5

2.2 Matching in general graphs

Given a graph G, let us denote by CG the set of its components, and by CG

q(G) the number of its odd components, those of odd order. If G has a q(G)

1-factor, then clearly
Tutte’s

conditionq(G−S) � |S| for all S ⊆ V (G),

since every odd component of G−S will send a factor edge to S.

G

S S

GS

Fig. 2.2.1. Tutte’s condition q(G−S) � |S| for q = 3, and the
contracted graph GS from Theorem 2.2.3.
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Again, this obvious necessary condition for the existence of a 1-factor
is also sufficient:

Theorem 2.2.1. (Tutte 1947)
A graph G has a 1-factor if and only if q(G−S) � |S| for all S ⊆ V (G).

Proof. Let G = (V, E) be a graph without a 1-factor. Our task is to findV, E

a bad set S ⊆ V , one that violates Tutte’s condition.bad set

We may assume that G is edge-maximal without a 1-factor. Indeed,
if G′ is obtained from G by adding edges and S ⊆ V is bad for G′, then
S is also bad for G: any odd component of G′ − S is the union of
components of G−S, and one of these must again be odd.

What does G look like? Clearly, if G contains a bad set S then, by
its edge-maximality and the trivial forward implication of the theorem,

all the components of G−S are complete and every vertex
s ∈ S is adjacent to all the vertices of G− s.

(∗)

But also conversely, if a set S ⊆ V satisfies (∗) then either S or the
empty set must be bad: if S is not bad we can join the odd components
of G− S disjointly to S and pair up all the remaining vertices—unless
|G| is odd, in which case ∅ is bad.

So it suffices to prove that G has a set S of vertices satisfying (∗).
Let S be the set of vertices that are adjacent to every other vertex. IfS

this set S does not satisfy (∗), then some component of G−S has non-
adjacent vertices a, a′. Let a, b, c be the first three vertices on a shortesta, b, c

a–a′ path in this component; then ab, bc ∈ E but ac /∈ E. Since b /∈ S,
there is a vertex d ∈ V such that bd /∈ E. By the maximality of G, thered

is a matching M1 of V in G + ac, and a matching M2 of V in G + bd.M1, M2

P
c

a

b

d

C
. . .

2 21

1

1

Fig. 2.2.2. Deriving a contradiction if S does not satisfy (∗)

Let P = d . . . v be a maximal path in G starting at d with an edgev

from M1 and containing alternately edges from M1 and M2 (Fig. 2.2.2).
If the last edge of P lies in M1, then v = b, since otherwise we could
continue P . Let us then set C := P + bd. If the last edge of P lies in M2,
then by the maximality of P the M1-edge at v must be ac, so v ∈ {a, c};
then let C be the cycle dPvbd. In each case, C is an even cycle with
every other edge in M2, and whose only edge not in E is bd. Replacing
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in M2 its edges on C with the edges of C −M2, we obtain a matching
of V contained in E, a contradiction. �

Corollary 2.2.2. (Petersen 1891)
Every bridgeless cubic graph has a 1-factor.

Proof. We show that any bridgeless cubic graph G satisfies Tutte’s con-
dition. Let S ⊆ V (G) be given, and consider an odd component C of
G−S. Since G is cubic, the degrees (in G) of the vertices in C sum to an
odd number, but only an even part of this sum arises from edges of C.
So G has an odd number of S–C edges, and therefore has at least 3 such
edges (since G has no bridge). The total number of edges between S and
G−S thus is at least 3q(G−S). But it is also at most 3|S|, because G
is cubic. Hence q(G−S) � |S|, as required. �

In order to shed a little more light on the techniques used in match-
ing theory, we now give a second proof of Tutte’s theorem. In fact,
we shall prove a slightly stronger result, a result that places a structure
interesting from the matching point of view on an arbitrary graph. If the
graph happens to satisfy the condition of Tutte’s theorem, this structure
will at once yield a 1-factor.

A non-empty graph G = (V, E) is called factor-critical if G has no factor-
critical

1-factor but for every vertex v ∈ G the graph G− v has a 1-factor. We
call a vertex set S ⊆ V matchable to CG−S if the (bipartite2) graph GS , matchable

which arises from G by contracting the components C ∈ CG−S to sin-
gle vertices and deleting all the edges inside S, contains a matching
of S. (Formally, GS is the graph with vertex set S ∪CG−S and edge set GS

{ sC | ∃ c ∈ C : sc ∈ E }; see Fig. 2.2.1.)

Theorem 2.2.3. Every graph G = (V, E) contains a vertex set S with
the following two properties:

(i) S is matchable to CG−S ;

(ii) Every component of G−S is factor-critical.

Given any such set S, the graph G contains a 1-factor if and only if
|S| = |CG−S |.

For any given G, the assertion of Tutte’s theorem follows easily from
this result. Indeed, by (i) and (ii) we have |S| � |CG−S | = q(G − S)
(since factor-critical graphs have odd order); thus Tutte’s condition of
q(G − S) � |S| implies |S| = |CG−S |, and the existence of a 1-factor
follows from the last statement of Theorem 2.2.3.

2 except for the—permitted—case that S or CG−S is empty
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Proof of Theorem 2.2.3. Note first that the last assertion of the(2.1.2)

theorem follows at once from the assertions (i) and (ii): if G has a
1-factor, we have q(G − S) � |S| and hence |S| = |CG−S | as above;
conversely if |S| = |CG−S |, then the existence of a 1-factor follows straight
from (i) and (ii).

We now prove the existence of a set S satisfying (i) and (ii), by
induction on |G|. For |G| = 0 we may take S = ∅. Now let G be given
with |G| > 0, and assume the assertion holds for graphs with fewer
vertices.

Consider the sets T ⊆ V for which Tutte’s condition fails worst, i.e.
for which

d(T ) := dG(T ) := q(G−T )− |T |d

is maximum, and let S be a largest such set T . Note that d(S) � d(∅) � 0.S

We first show that every component C ∈ CG−S =: C is odd. If |C|C
is even, pick a vertex c ∈ C, and consider T := S ∪ {c}. As C − c has
odd order it has at least one odd component, which is also a component
of G−T . Therefore

q(G−T ) � q(G−S) + 1 while |T | = |S|+ 1 ,

so d(T ) � d(S) contradicting the choice of S.
Next we prove the assertion (ii), that every C ∈ C is factor-critical.

Suppose there exist C ∈ C and c ∈ C such that C ′ := C − c has no
1-factor. By the induction hypothesis (and the fact that, as shown ear-
lier, for fixed G our theorem implies Tutte’s theorem) there exists a set
S′ ⊆ V (C ′) with

q(C ′ −S′) > |S′| .
Since |C| is odd and hence |C ′| is even, the numbers q(C ′−S′) and |S′|
are either both even or both odd, so they cannot differ by exactly 1. We
may therefore sharpen the above inequality to

q(C ′ −S′) � |S′|+ 2 ,

giving dC′(S′) � 2. Then for T := S ∪{c}∪S′ we have

d(T ) � d(S)− 1− 1 + dC′(S′) � d(S) ,

where the first ‘−1’ comes from the loss of C as an odd component
and the second comes from including c in the set T . As before, this
contradicts the choice of S.

It remains to show that S is matchable to CG−S . If not, then by
the marriage theorem there exists a set S′ ⊆ S that sends edges to fewer
than |S′| components in C. Since the other components in C are also
components of G− (S � S′), the set T = S � S′ satisfies d(T ) > d(S),
contrary to the choice of S. �
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Let us consider once more the set S from Theorem 2.2.3, together S

with any matching M in G. As before, we write C := CG−S . Let us C
denote by kS the number of edges in M with at least one end in S, and
by kC the number of edges in M with both ends in G− S. Since each kS , kC
C ∈ C is odd, at least one of its vertices is not incident with an edge of
the second type. Therefore every matching M satisfies

kS � |S| and kC � 1
2

(

|V | − |S| − |C|
)

. (1)

Moreover, G contains a matching M0 with equality in both cases: first M0

choose |S| edges between S and
⋃ C according to (i), and then use (ii) to

find a suitable set of 1
2

(

|C| − 1
)

edges in every component C ∈ C. This
matching M0 thus has exactly

|M0| = |S|+ 1
2

(

|V | − |S| − |C|
)

(2)

edges.
Now (1) and (2) together imply that every matching M of maximum

cardinality satisfies both parts of (1) with equality: by |M | � |M0|
and (2), M has at least |S|+ 1

2

(

|V | − |S| − |C|
)

edges, which implies by
(1) that neither of the inequalities in (1) can be strict. But equality
in (1), in turn, implies that M has the structure described above: by
kS = |S|, every vertex s ∈ S is the end of an edge st ∈ M with t ∈ G−S,
and by kC = 1

2

(

|V | − |S| − |C|
)

exactly 1
2 (|C| − 1

)

edges of M lie in C,
for every C ∈ C. Finally, since these latter edges miss only one vertex in
each C, the ends t of the edges st above lie in different components C
for different s.

The seemingly technical Theorem 2.2.3 thus hides a wealth of struc-
tural information: it contains the essence of a detailed description of
all maximum-cardinality matchings in all graphs. A reference to the
full statement of this structural result, known as the Gallai-Edmonds
matching theorem, is given in the notes at the end of this chapter.

2.3 Packing and covering

Much of the charm of König’s and Hall’s theorems in Section 2.1 lies
in the fact that they guarantee the existence of the desired matching as
soon as some obvious obstruction does not occur. In König’s theorem,
we can find k independent edges in our graph unless we can cover all its
edges by fewer than k vertices (in which case it is obviously impossible).

More generally, if G is an arbitrary graph, not necessarily bipartite,
and H is any class of graphs, we might compare the largest number k
of graphs from H (not necessarily distinct) that we can pack disjointly
into G with the smallest number s of vertices of G that will cover all its
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subgraphs in H. If s can be bounded by a function of k, i.e. independently
of G, we say that H has the Erdős-Pósa property . (Thus, formally, H hasErdős-Pósa

property
this property if there exists an N→N function k 
→ f(k) such that, for
every k and G, either G contains k disjoint subgraphs each isomorphic
to a graph in H, or there is a set U ⊆ V (G) of at most f(k) vertices
such that G−U has no subgraph in H.)

Our aim in this section is to prove the theorem of Erdős and Pósa
that the class of all cycles has this property: we shall find a function f
(about 4k log k) such that every graph contains either k disjoint cycles
or a set of at most f(k) vertices covering all its cycles.

We begin by proving a stronger assertion for cubic graphs. For
k ∈ N, put

sk :=
{

4krk if k � 2
1 if k � 1

where rk := log k + log log k + 4 .
rk, sk

Lemma 2.3.1. Let k ∈ N, and let H be a cubic multigraph. If |H| � sk,
then H contains k disjoint cycles.

Proof. We apply induction on k. For k � 1 the assertion is trivial, so let(1.3.5)

k � 2 be given for the induction step. Let C be a shortest cycle in H.
We first show that H −C contains a subdivision of a cubic multi-

graph H ′ with |H ′| � |H|−2|C|. Let m be the number of edges betweenm

C and H −C. Since H is cubic and d(C) = 2, we have m � |C|. We now
consider bipartitions {V1, V2} of V (H), beginning with V1 := V (C) and
allowing V2 = ∅. If H[V2] has a vertex of degree at most 1 we move this
vertex to V1, obtaining a new partition {V1, V2} crossed by fewer edges.
Suppose we can perform a sequence of n such moves, but no more. (Ourn

assumptions imply n � 2, but we do not formally need this.) Then
the resulting partition {V1, V2} is crossed by at most m−n edges. And
H[V2] has at most m−n vertices of degree less than 3, because each of
these is incident with a cut edge. These vertices have degree exactly 2
in H[V2], since we could not move them to V1. Let H ′ be the cubic
multigraph obtained from H[V2] by suppressing these vertices. Then

|H ′| � |H| − |C| −n− (m−n) � |H| − 2|C| ,

as desired.
To complete the proof, it suffices to show that |H ′| � sk−1. Since

|C| � 2 log |H| by Corollary 1.3.5 (or by |H| � sk, if |C| = g(H) � 2),
and |H| � sk � 6, we have

|H ′| � |H| − 2|C| � |H| − 4 log |H| � sk − 4 log sk .

(In the last inequality we use that the function x 
→ x− 4 log x increases
for x � 6.)
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It thus remains to show that sk − 4 log sk � sk−1. For k = 2 this is
clear, so we assume that k � 3. Then rk � 4 log k (which is obvious for
k � 4, while the case of k = 3 has to be calculated), and hence

sk − 4 log sk = 4(k− 1)rk + 4 log k + 4 log log k + 16
−

(

8 + 4 log k + 4 log rk

)

� sk−1 + 4 log log k + 8− 4 log(4 log k)

= sk−1 . �

Theorem 2.3.2. (Erdős & Pósa 1965)
There is a function f : N → N such that, given any k ∈ N, every graph
contains either k disjoint cycles or a set of at most f(k) vertices meeting
all its cycles.

Proof. We show the result for f(k) := �sk + k− 1�. Let k be given, and
let G be any graph. We may assume that G contains a cycle, and so it
has a maximal subgraph H in which every vertex has degree 2 or 3. Let
U be its set of degree 3 vertices. U

Let C be the set of all cycles in G that avoid U and meet H in exactly
one vertex. Let Z ⊆ V (H) � U be the set of those vertices. For each Z

z ∈ Z pick a cycle Cz ∈ C that meets H in z, and put C′ := {Cz | z ∈ Z }.
By the maximality of H, the cycles in C′ are disjoint.

Let D be the set of the 2-regular components of H that avoid Z.
Then C′∪D is another set of disjoint cycles. If |C′∪D| � k, we are done.
Otherwise we can add to Z one vertex from each cycle in D to obtain a
set X of at most k− 1 vertices that meets all the cycles in C and all the X

2-regular components of H. Now consider any cycle of G that avoids X.
By the maximality of H it meets H. But it is not a component of H, it
does not lie in C, and it does not contain an H - path between distinct
vertices outside U (by the maximality of H). So this cycle meets U .

We have shown that every cycle in G meets X ∪U . As |X| � k− 1,
it thus suffices to show that |U | < sk unless H contains k disjoint cycles.
But this follows from Lemma 2.3.1 applied to the multigraph obtained
from H by suppressing its vertices of degree 2. �

We shall meet the Erdős-Pósa property again in Chapter 12. There,
a considerable extension of Theorem 2.3.2 will appear as an unexpected
and easy corollary of the theory of graph minors.
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2.4 Tree-packing and arboricity

In this section we consider packing and covering in terms of edges rather
than vertices. How many edge-disjoint spanning trees can we find in
a given graph? And how few trees in it, not necessarily edge-disjoint,
suffice to cover all its edges?

To motivate the tree-packing problem, assume for a moment that
our graph represents a communication network, and that for every choice
of two vertices we want to be able to find k edge-disjoint paths between
them. Menger’s theorem (3.3.6 (ii)) in the next chapter will tell us that
such paths exist as soon as our graph is k-edge-connected, which is clearly
also necessary. This is a good theorem, but it does not tell us how to find
those paths; in particular, having found them for one pair of endvertices
we are not necessarily better placed to find them for another pair. If our
graph has k edge-disjoint spanning trees, however, there will always be k
canonical such paths, one in each tree. Once we have stored those trees
in our computer, we shall always be able to find the k paths quickly, for
any given pair of endvertices.

When does a graph G have k edge-disjoint spanning trees? If it
does, it clearly must be k-edge-connected. The converse, however, is
easily seen to be false (try k = 2); indeed it is not even clear that any
edge-connectivity will imply the existence of k edge-disjoint spanning
trees. (But see Corollary 2.4.2 below.)

Here is another necessary condition. If G has k edge-disjoint span-
ning trees, then with respect to any partition of V (G) into r sets, every
spanning tree of G has at least r−1 cross-edges, edges whose ends lie incross-edges

different partition sets (why?). Thus if G has k edge-disjoint spanning
trees, it has at least k (r−1) cross-edges. This condition is also sufficient:

Theorem 2.4.1. (Nash-Williams 1961; Tutte 1961)
A multigraph contains k edge-disjoint spanning trees if and only if for
every partition P of its vertex set it has at least k (|P | − 1) cross-edges.

Before we prove Theorem 2.4.1, let us note a surprising corollary:
to ensure the existence of k edge-disjoint spanning trees, it suffices to
raise the edge-connectivity to just 2k:

Corollary 2.4.2. Every 2k-edge-connected multigraph G has k edge-[6.4.4]

disjoint spanning trees.

Proof. Every set in a vertex partition of G is joined to other partition
sets by at least 2k edges. Hence, for any partition into r sets, G has
at least 1

2

∑r
i=1 2k = kr cross-edges. The assertion thus follows from

Theorem 2.4.1. �
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For a proof of the non-trivial direction of Theorem 2.4.1, let a multi- G = (V, E)

graph G = (V, E) and k ∈ N be given. Our approach will be as follows. k

Since we do not know yet whether the desired trees exist, we start with
a family of k edge-disjoint spanning forests. These certainly exist; let
F1, . . . , Fk be a choice whose total set of edges, E(F1∪ . . .∪Fk), is maxi- F1, . . . , Fk

mal. Next, we look for a set U of at least two vertices that is connected in
every Fi. If U = V , then our forests Fi are in fact trees and we are done.
If U � V , we contract U and apply induction to the multigraph G/U .
The resulting k spanning trees of G/U can then be turned into spanning
trees of G by inserting the trees Fi[U ].

How shall we construct such a set U? For reasons that will become
clear later, we shall start by finding a set U0 = {x∗, y∗} of two vertices U0

that are adjacent in G but not in any Fi. We want its vertices to be
linked in Fi[U ] for every i, but they are not linked in Fi[U0]. So we
have to add some paths: let H1 be the union of the paths x∗Fiy

∗, one
for each i, and U1 := V (H1). (We shall have to show that these paths
exist.) Now x∗ and y∗ are linked in Fi[U1] for every i. But we have many
new pairs of vertices, and these may not yet be linked in every Fi[U1].
To link these vertices too, we add some more paths—and so on. As our
graph G is finite, this process will eventually stabilize: with a set Un of
vertices that is connected in every Fi.

Lemma 2.4.3. For every edge e∗ = x∗y∗ in E � E(F1 ∪ . . .∪Fk) there
exists a set U ⊆ V that is connected in Fi[U ] for every i = 1, . . . , k and
contains both x∗ and y∗.

Proof. Consider the (unique) maximal sequence ∅ = P0 ⊆ P1 ⊆ . . . ⊆ Pn n

of sets of paths such that P� �P�−1 �= ∅ and

P� = P�−1 ∪
⋃

{xFiy | xy ∈ E�−1; i = 1 . . . , k } (1)

for all � � 1, where E0 := {e∗} and E� := E
( ⋃P�

)

�

⋃

i<� Ei for all E�

� � 1. (We shall prove in a moment that those paths xFiy exist, i.e.
that x and y lie in the same component of Fi.) Thus for � � 1, the
set E� consists of the edges ‘added in step n’ (induction on �). Every
path P ⊆ Fj added at that time will be emulated by walks added to the
other Fi in the next step, when we link the ends x, y of any edge of P
also in Fi by adding xFiy if necessary. We finally define Pn+1 by (1) for
� = n + 1, but note that Pn+1 �Pn = ∅ by the maximality of n.

For all 1 � � � n+1 write H� :=
⋃P� and U� := V (H�). For every H�, U�

P ∈ Pn let �(P ) be the unique � such that P ∈ P� � P�−1. For every
e ∈

⋃n
�=0 E� let �(e) be the unique � such that e ∈ E�. For every 1 � � � n �(P ), �(e)

and e ∈ E� choose a path P (e) ∈ P� containing e. For every 1 � � � n
and P ∈ P� �P�−1 choose an edge e(P ) ∈ E�−1 joining its ends. (Thus P (e), e(P )

if P = xFiy, then e(P ) is one of the—possibly several parallel—edges
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xy ∈ E�−1 that gave rise to P in (1).) Then, for every e and P ,

�(e) = �(P (e)) and �(P ) > �(e(P )) . (2)

Let us show that the paths xFiy in (1) always exist, i.e., that for
every edge xy ∈

⋃n
�=0 E� and every i the vertices x, y lie in the same com-

ponent of Fi. Suppose not, and add the edge xy to Fi; then Fi remains
a forest. Now consider the maximal sequence e1, P1, e2, P2, e3, . . . such
that e1 = xy, and Pq = P (eq) and eq+1 = e(Pq) for all q. This sequence
can end only with the edge e∗, since for all edges e ∈

⋃n
�=1 E� the path

P (e) is defined, and for every path P ∈ Pn the edge e(P ) is defined. And
since �(eq) = �(Pq) > �(eq+1) for all q by (2), the sequence does end.
Recall that we added the edge e1 to Fi. For q = 1, 2, . . . inductively,
we now delete eq from the forest Fj containing Pq and add eq+1 to that
forest. Since Pq + eq+1 is a cycle, this operation preserves Fj as a forest:
the addition of eq+1 to Fj −eq does not create a cycle in Fj −eq. Each of
our forests Fj may change several times in this process, but eventually,
after adding e∗ to the last of these forests, we shall have a new family
(F1, . . . , Fk) of edge-disjoint spanning forests with one more edge in total
than before; this contradicts our initial choice of F1, . . . , Fk.

For our proof that Un is connected in every Fi, let us show induc-
tively for � = 1, . . . , n+ 1 that

(∀ v ∈ U�−1)(∀ i ∈ {1, . . . , k})
(

Fi ∩H� contains a v–x∗ path
)

(3)

(∀ v ∈ U�)(∃ j ∈ {1, . . . , k})
(

Fj ∩H� contains a v–x∗ path
)

(4)

Both these are clear for � = 1. To prove (3) for � = m > 1, let v ∈ Um−1

and i ∈ {1, . . . , k} be given. Since (4) holds for � = m−1 by the induction
hypothesis, there is a v–x∗ path Q ⊆ Fj ∩Hm−1 for some j. Every edge
uv of Q lies in E�−1 for some � � m; then P� contains the path uFiv.
Replacing the edges of Q with these paths we may turn Q into a v–x∗

walk in Fi ∩Hm, which contains the desired v–x∗ path.
To prove (4) for � = m > 1, let v ∈ Um be given. As (4) holds for all

� < m by the induction hypothesis, we may assume that v ∈ Um �Um−1.
Then v lies on a path P = xFjy ⊆ Hm for some j and x, y ∈ Um−1. By
(3) for � = m (as proved above), there is an x–x∗ path P ′ in Fj ∩Hm.
Then vPxP ′x∗ is a walk in Fj ∩Hm that contains the desired v–x∗ path.

Finally, let us show that the graphs Fi ∩ Hn are all connected;
then U = Un proves the lemma. Recall that Pn+1 = Pn, and hence
Hn+1 = Hn. By (3) for � = n+1, the graphs Fi ∩Hn+1 = Fi ∩Hn have
only one component, the component containing x∗. �
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Proof of Theorem 2.4.1. We prove the backward implication by (1.5.3)

induction on |G|. For |G| = 2 the assertion holds. For the induction step
we assume that for every partition P of V there are at least k (|P | − 1)
cross-edges, and find k edge-disjoint spanning trees in G.

Let us start with the k edge-disjoint spanning forests F1, . . . , Fk

defined earlier, those whose total set of edges was maximal. If these are
not all trees, then

k∑

i=1

‖Fi‖ < k (|G| − 1)

by Corollary 1.5.3. On the other hand, we have ‖G‖ � k (|G| − 1) by
assumption: consider the partition of V into single vertices. So there
exists an edge e∗ ∈ E � E(F1 ∪ . . .∪Fk). e∗

By Lemma 2.4.3, there exists a set U ⊆ V that is connected in U

every Fi and contains the ends of e∗; in particular, |U | � 2. Since
every partition of the contracted multigraph G/U induces a partition of
G with the same cross-edges,3 G/U has at least k (|P | − 1) cross-edges
with respect to any partition P of its vertex set. By the induction hypo-
thesis, therefore, G/U has k edge-disjoint spanning trees, T1, . . . , Tk say.
Replacing in each Ti the vertex vU contracted from U by the spanning
tree Fi[U ] of G[U ], we obtain k edge-disjoint spanning trees in G. �

Let us say that subgraphs G1, . . . , Gk of a graph G partition G if graph
partition

their edge sets form a partition of E(G). Our spanning tree problem may
then be recast as follows: into how many connected spanning subgraphs
can we partition a given graph? The excuse for rephrasing our simple
tree problem in this more complicated way is that it now has an obvious
dual (cf. Theorem 1.5.1): into how few acyclic (spanning) subgraphs
can we partition a given graph? Or for given k: which graphs can be
partitioned into at most k forests?

An obvious necessary condition now is that every set U ⊆ V (G)
induces at most k (|U | − 1) edges, no more than |U | − 1 for each forest.
Once more, this condition turns out to be sufficient too. And surpris-
ingly, this can be shown with the help of Lemma 2.4.3, which was de-
signed for the proof of our theorem on edge-disjoint spanning trees:

Theorem 2.4.4. (Nash-Williams 1964)
A multigraph G = (V, E) can be partitioned into at most k forests if and
only if ‖G[U ]‖ � k (|U | − 1) for every non-empty set U ⊆ V .

Proof. The forward implication was shown above. Conversely, we show (1.5.3)

that every family F1, . . . , Fk of edge-disjoint spanning forests with a max-
imal total set of edges partitions G. If not, pick e ∈ E �E(F1∪ . . .∪Fk).

3 see Chapter 1.10 on contraction in multigraphs
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By Lemma 2.4.3, there exists a set U ⊆ V that is connected in every
Fi and contains the ends of e. Then G[U ] contains |U | − 1 edges from
each Fi, and in addition the edge e. Thus ‖G[U ]‖ > k (|U |−1), contrary
to our assumption. �

The least number of forests forming a partition of a graph G is called
the arboricity of G. By Theorem 2.4.4, the arboricity is a measure forarboricity

the maximum local density: a graph has small arboricity if and only if
it is ‘nowhere dense’, i.e. if and only if it has no subgraph H with ε(H)
large.

We shall meet Theorem 2.4.1 again in Chapter 8.5, where we prove
its infinite version. This is based not on ordinary spanning trees (for
which the result is false) but on ‘topological spanning trees’: the analog-
ous structures in a topological space formed by the graph together with
its ends.

2.5 Path covers

Let us return once more to König’s duality theorem for bipartite graphs,
Theorem 2.1.1. If we orient every edge of G from A to B, the theorem
tells us how many disjoint directed paths we need in order to cover all
the vertices of G: every directed path has length 0 or 1, and clearly the
number of paths in such a ‘path cover’ is smallest when it contains as
many paths of length 1 as possible—in other words, when it contains a
maximum-cardinality matching.

In this section we put the above question more generally: how many
paths in a given directed graph will suffice to cover its entire vertex set?
Of course, this could be asked just as well for undirected graphs. As it
turns out, however, the result we shall prove is rather more trivial in
the undirected case (exercise), and the directed case will also have an
interesting corollary.

A directed path is a directed graph P �= ∅ with distinct vertices
x0, . . . , xk and edges e0, . . . , ek−1 such that ei is an edge directed from
xi to xi+1, for all i < k. In this section, path will always mean ‘directedpath

path’. The vertex xk above is the last vertex of the path P , and when P
is a set of paths we write ter(P) for the set of their last vertices. A pathter(P)

cover of a directed graph G is a set of disjoint paths in G which togetherpath cover

contain all the vertices of G.

Theorem 2.5.1. (Gallai & Milgram 1960)
Every directed graph G has a path cover P and an independent set
{ vP | P ∈ P } of vertices such that vP ∈ P for every P ∈ P.
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Proof. Clearly, G has a path cover, e.g. by trivial paths. We prove by
induction on |G| that for every path cover P = {P1, . . . , Pm} with ter(P) P, Pi

minimal there is a set { vP | P ∈ P } as claimed. For each i, let vi denote vi

the last vertex of Pi.
If ter(P) = {v1, . . . , vm} is independent there is nothing more to

show, so we assume that G has an edge from v2 to v1. Since P2v2v1

is again a path, the minimality of ter(P) implies that v1 is not the
only vertex of P1; let v be the vertex preceding v1 on P1. Then P ′ := v

{P1v, P2, . . . , Pm} is a path cover of G′ := G− v1 (Fig. 2.5.1). Clearly, P ′, G′

any independent set of representatives for P ′ in G′ will also work for
P in G, so all we have to check is that we may apply the induction
hypothesis to P ′. It thus remains to show that ter(P ′) = {v, v2, . . . , vm}
is minimal among the sets of last vertices of path covers of G′.

. . .

v1 v2

P1 P2

v

Pm

Fig. 2.5.1. Path covers of G and G′

Suppose then that G′ has a path cover P ′′ with ter(P ′′) � ter(P ′).
If a path P ∈ P ′′ ends in v, we may replace P in P ′′ by Pvv1 to obtain
a path cover of G whose set of last vertices is a proper subset of ter(P),
contradicting the choice of P. If a path P ∈ P ′′ ends in v2 (but none in v),
we similarly replace P in P ′′ by Pv2v1 to obtain a contradiction to the
minimality of ter(P). Hence ter(P ′′) ⊆ {v3, . . . , vm}. But now P ′′ and
the trivial path {v1} together form a path cover of G that contradicts
the minimality of ter(P). �

As a corollary to Theorem 2.5.1 we obtain a classical result from
the theory of partial orders. Recall that a subset of a partially ordered
set (P,�) is a chain in P if its elements are pairwise comparable; it is chain

an antichain if they are pairwise incomparable. antichain

Corollary 2.5.2. (Dilworth 1950)
In every finite partially ordered set (P,�), the minimum number of
chains with union P is equal to the maximum cardinality of an antichain
in P .
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Proof. If A is an antichain in P of maximum cardinality, then clearly
P cannot be covered by fewer than |A| chains. The fact that |A| chains
will suffice follows from Theorem 2.5.1 applied to the directed graph on
P with the edge set { (x, y) | x < y }. �

Exercises

1. Let M be a matching in a bipartite graph G. Show that if M is sub-
optimal, i.e. contains fewer edges than some other matching in G, then
G contains an augmenting path with respect to M . Does this fact
generalize to matchings in non-bipartite graphs?

2. Describe an algorithm that finds, as efficiently as possible, a matching
of maximum cardinality in any bipartite graph.

3. Show that if there exist injective functions A→B and B →A between
two infinite sets A and B then there exists a bijection A→B.

4.+ Moving alternately, two players jointly construct a path in some fixed
graph G. If v1 . . . vn is the path constructed so far, the player to move
next has to find a vertex vn+1 such that v1 . . . vn+1 is again a path.
Whichever player cannot move loses. For which graphs G does the first
player have a winning strategy, for which the second?

5. Derive the marriage theorem from König’s theorem.

6. Let G and H be defined as for the third proof of Hall’s theorem. Show
that dH(b) � 1 for every b ∈ B, and deduce the marriage theorem.

7.+ Find an infinite counterexample to the statement of the marriage the-
orem.

8. Let k be an integer. Show that any two partitions of a finite set into
k-sets admit a common choice of representatives.

9. Let A be a finite set with subsets A1, . . . , An, and let d1, . . . , dn ∈ N.
Show that there are disjoint subsets Dk ⊆ Ak, with |Dk| = dk for all
k � n, if and only if

∣
∣
∣

⋃

i∈I

Ai

∣
∣
∣ �

∑

i∈I

di

for all I ⊆ {1, . . . , n}.

10.+ Prove Sperner’s theorem: in an n-set X there are never more than(
n

�n/2�
)

subsets such that none of these contains another.

(Hint. Construct
(

n
�n/2�

)
chains covering the power set lattice of X.)

11.+ Let G be a bipartite graph with bipartition {A, B}. Assume that
δ(G) � 1, and that d(a) � d(b) for every edge ab with a ∈ A. Show
that G contains a matching of A.
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12.− Find a bipartite graph with a set of preferences such that no matching
of maximum size is stable and no stable matching has maximum size.
Find a non-bipartite graph with a set of preferences that has no stable
matching.

13.− Consider the algorithm described in the proof of the stable marriage
theorem. Observe that once a vertex of B is matched, she remains
matched and gets happier with every change of her matching edge.
On the other hand, show that the sequence of matching edges incident
with a given vertex of A makes this vertex unhappier with every change
(disregarding the interim periods when he is unmatched).

14. Show that all stable matchings of a given graph cover the same vertices.
(In particular, they have the same size.)

15.+ Show that the following ‘obvious’ algorithm need not produce a stable
matching in a bipartite graph. Start with any matching. If the current
matching is not maximal, add an edge. If it is maximal but not stable,
insert an edge that creates instability, deleting any current matching
edges at its ends.

16. Find a set S for Theorem 2.2.3 when G is a forest.

17. A graph G is called (vertex-) transitive if, for any two vertices v, w ∈ G,
there is an automorphism of G mapping v to w. Using the observa-
tions following the proof of Theorem 2.2.3, show that every transitive
connected graph of even order contains a 1-factor.

18. Show that a graph G contains k independent edges if and only if
q(G−S) � |S|+ |G| − 2k for all sets S ⊆ V (G).

19.− Find a cubic graph without a 1-factor.

20.+ Derive the marriage theorem from Tutte’s theorem.

21.− Disprove the analogue of König’s theorem (2.1.1) for non-bipartite
graphs, but show that H = {K2} has the Erdős-Pósa property.

22. For cubic graphs, Lemma 2.3.1 is considerably stronger than the Erdős-
Pósa theorem. Extend the lemma to arbitrary multigraphs of minimum
degree � 3, by finding a function g: N→N such that every multigraph of
minimum degree � 3 and order at least g(k) contains k disjoint cycles,
for all k ∈ N. Alternatively, show that no such function g exists.

23. Given a graph G, let α(G) denote the largest size of a set of independent
vertices in G. Prove that the vertices of G can be covered by at most
α(G) disjoint subgraphs each isomorphic to a cycle or a K2 or K1.

24. Show that if G has two edge-disjoint spanning trees, it has a connected
spanning subgraph all whose degrees are even.

25. Find the error in the following short ‘proof’ of Theorem 2.4.1. Call a
partition non-trivial if it has at least two classes and at least one of the
classes has more than one element. We show by induction on |V |+ |E|
that G = (V, E) has k edge-disjoint spanning trees if every non-trivial
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partition of V into r sets (say) has at least k(r − 1) cross-edges. The
induction starts trivially with G = K1 if we allow k copies of K1 as a
family of k edge-disjoint spanning trees of K1. We now consider the
induction step. If every non-trivial partition of V into r sets (say) has
more than k(r − 1) cross-edges, we delete any edge of G and are done
by induction. So V has a non-trivial partition {V1, . . . , Vr} with exactly
k(r−1) cross-edges. Assume that |V1| � 2. If G′ := G[V1] has k disjoint
spanning trees, we may combine these with k disjoint spanning trees
that exist in G/V1 by induction. We may thus assume that G′ has
no k disjoint spanning trees. Then by induction it has a non-trivial
vertex partition {V ′

1 , . . . , V ′
s} with fewer than k(s − 1) cross-edges.

Then {V ′
1 , . . . , V ′

s , V2, . . . , Vr} is a non-trivial vertex partition of G into
r + s− 1 sets with fewer than k(r − 1) + k(s− 1) = k((r + s− 1)− 1)
cross-edges, a contradiction.

26. A graph G is called balanced if ε(H) � ε(G) for every subgraph H ⊆ G.

(i) Find a few natural classes of balanced graphs.

(ii) Show that the arboricity of a balanced graph is bounded above
by its average degree. Is it even bounded by ε? Or by ε +1?

(iii) Characterize, in terms of the balanced graphs or otherwise, the
graphs G such that ε(H) � ε(G) for every induced subgraph
H ⊆ G.

27. Rephrase König’s and Dilworth’s theorems as pure existence statements
without any inequalities.

28.− Prove the undirected version of the theorem of Gallai & Milgram (with-
out using the directed version).

29. Derive the marriage theorem from the theorem of Gallai & Milgram.

30.− Show that a partially ordered set of at least rs + 1 elements contains
either a chain of size r +1 or an antichain of size s +1.

31. Prove the following dual version of Dilworth’s theorem: in every finite
partially ordered set (P, �), the minimum number of antichains with
union P is equal to the maximum cardinality of a chain in P .

32. Derive König’s theorem from Dilworth’s theorem.

33. Find a partially ordered set that has no infinite antichain but is not a
union of finitely many chains.

Notes
There is a very readable and comprehensive monograph about matching in
finite graphs: L. Lovász & M.D.Plummer, Matching Theory , Annals of Dis-
crete Math. 29, North Holland 1986. Another very comprehensive source is
A. Schrijver, Combinatorial optimization, Springer 2003. All the references for
the results in this chapter can be found in these two books.
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As we shall see in Chapter 3, König’s Theorem of 1931 is no more than the
bipartite case of a more general theorem due to Menger, of 1929. At the time,
neither of these results was nearly as well known as Hall’s marriage theorem,
which he proved even later, in 1935. To this day, Hall’s theorem remains
one of the most applied graph-theoretic results. The first two of our proofs
are folklore. The edge-minimal subgraph approach of our third proof can be
traced back to a paper of Rado (1967); our version and its dual, Exercise 66,
are due to Kriesell.

For background and applications of the stable marriage theorem, see
D.Gusfield & R.W. Irving, The Stable Marriage Problem: Structure and Algo-
rithms, MIT Press 1989, as well as A.Tamura, Transformation from arbitrary
matchings to stable matchings, J.Comb. Theory A 62 (1993), 310–323.

Our proof of Tutte’s 1-factor theorem is based on a proof by Lovász
(1975). Our extension of Tutte’s theorem, Theorem 2.2.3 (including the infor-
mal discussion following it) is a lean version of a comprehensive structure the-
orem for matchings, due to Gallai (1964) and Edmonds (1965). See Lovász &
Plummer for a detailed statement and discussion of this theorem.

Theorem 2.3.2 is due to P. Erdős & LPósa, On independent circuits con-
tained in a graph, Canad. J.Math. 17 (1965), 347–352. Our proof is essentially
due to M. Simonovits, A new proof and generalization of a theorem of Erdős
and Pósa on graphs without k + 1 independent circuits, Acta Sci. Hungar 18
(1967), 191–206. Calculations such as in Lemma 2.3.1 are standard for proofs
where one aims to bound one numerical invariant in terms of another. This
book does not emphasize this aspect of graph theory, but it is not atypical.

There is also an analogue of the Erdős-Pósa theorem for directed graphs
(with directed cycles), which had long been conjectured but was only recently
proved by B.Reed, N.Robertson, P.D. Seymour and R.Thomas, Packing di-
rected circuits, Combinatorica 16 (1996), 535–554. Its proof is much more
difficult than the undirected case; see Chapter 12.4, and in particular Corol-
lary 12.4.10, for a glimpse of the techniques used.

Theorem 2.4.1 was proved independently by Nash-Williams and by Tutte;
both papers are contained in J. Lond. Math. Soc. 36 (1961). Theorem 2.4.4 is
due to C.St.J.A.Nash-Williams, Decompositions of finite graphs into forests,
J. Lond. Math. Soc. 39 (1964), 12. Both results can be elegantly expressed and
proved in the setting of matroids; see Schrijver’s book.

An interesting vertex analogue of Corollary 2.4.2 is to ask which connec-
tivity forces the existence of k spanning trees T1, . . . , Tk, all rooted at a given
vertex r, such that for every vertex v the k paths vTir are independent. For
example, if G is a cycle then deleting the edge left or right of r produces two
such spanning trees. A. Itai and A. Zehavi, Three tree-paths, J.Graph Theory
13 (1989), 175–187, conjectured that κ � k should suffice. This conjecture has
been proved for k � 4; see S. Curran, O. Lee & X.Yu, Chain decompositions
and independent trees in 4-connected graphs, Proc. 14th Ann. ACM SIAM
symposium on Discrete algorithms (Baltimore 2003), 186–191.

Theorem 2.5.1 is due to T.Gallai & A.N.Milgram, Verallgemeinerung
eines graphentheoretischen Satzes von Rédei, Acta Sci. Math. (Szeged) 21
(1960), 181–186.
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